

Massively Interconnected NoDe

Vladimir Gorelik v.gorelik@neuronix.net 88 Mishawum Road Woburn, MA 01801 Phone: (912) 596 3496 www.neuronix.net/neuronix

Outline

- Summary
- Conceptual Description
- Performance
- Applications

Summary

The proposed computing architecture is capable of:

- 20 Trillions 98-bit Multiply-Accumulate (TMAC) operations per second or
- 12 Trillions Core I7 instructions per second (TMIP) or
- Equivalent combination of TMACs and TMIPs
- Communication bandwidth
 - Internal 25 Tb/sec
 - External 4 Tb/sec

 The above level of performance is delivered in 2 Liters volume that also includes secondary power supplies, cooling subsystem and all required internal and external interconnects

Mechanical Superstructure

- Integrated Processing Power Supply and Cooling Modules
 IPPCMs
- Truncated Icosahedron topology
 - 20 hexagonal IPPCMs
 - 12 pentagonal IPPCMs
- High-Density External Optical Interconnects
- Free-Space internal Optical Interconnects
- 2,000cm² of die attach area in 2 Liters volume
- Common conductive Icosahedral Core

Integrated Processing Power Supply and Cooling Module (IPPCM)

PIN-diode bar

Hexagonal IPPCM

Laser (VCSEL) bar, i.e. Finisar # 850-2093-002 Free-space optical Interface

Photonic Assemblies

Pentagonal IPPCM

External Optical Interconnect

TPM Layout

Richness and Complexity of MIND Interconnects

Third-Level protocol – see next slide

Traffic negotiation and routing schemes

Traffic analyzer/negotiator – one per TPM, six or five per IPPCM

Hypercube with MIND in each node

Packaging density by much exceeds Fujitsu 6D Torus as each node contains up to 180 100Gb/sec optical interconnects – 18Tbits/sec per node

Long-range, low Latency and Low Delay optical connections

 \sim

Optical fibers connecting Far Neighbors establish either direct routes or run via an optical switch for added flexibility with virtually no delay and overhead

Example of MIND Performance Metrics

including all processing, secondary power supply, cooling and interconnect components

Device	Unitary Performance Of a single component				MIND Performance In a 2 Liter volume			
	GMAC	DMIPS	IO [Gb /sec]	Power [W]	GMAC	DMIPS	IO	W
XC5VSX240T	700	N/A	90	47	126000	N/A	16200	8460
XC5VFX200T	170	2000	156	47	30600	360K	26080	8460
Intel Core I7 Extreme with X58	N/A	76383	25.6	200	N/A	13748940	4608	36000 ¹

¹ This level of power consumption would require more potent then FC-77 coolant (Freon-12 ?)

Applications

- Supercomputing
- Intelligent Network-Switch/Router
- Neural Networks
- Intelligent Control Agents
- Robotics
- Borg

Follow up with Altera Factory Apps

- The concept was developed over ten years ago; deemed a "blue-sky research" and unrealistic by my employer at the time due to the complexity and an absence of an industry partner and a "champion." OpenCL and SDSoC from Xilinx vastly improved FPGA tools and IP.
- Traditional HPC derived applications
 - Fluid dynamics
 - FEA
 - Protein folding
 - Data mining
- Not-traditional
 - Cortical Processor
- > Funding:
 - DARPA Cortical processor or similar
 - Department of Energy HPC
 - Internal Altera
 - External investors