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Abstract – This paper presents a new approach to simulate the 

behavior of a biological neuron in silicon.  The proposed device has 
the ability to mimic a variety of structures and interconnect 
architectures commonly found in biological neural nets.  The 
proposed device may be fabricated in polysilicon rather than in a 
single crystal substrate and thus permits multi-layer architectures. 
Unlike MOS and BJT-based structures, the device utilizes 
significantly different operating principles that are more closely 
related to transport mechanisms in biological neurons.  The device 
is well suited to simulate axodendritic, dendrodendritic, axoaxonic, 
and reciprocal synapses.  A network of such devices can be 
constructed to perform both spatial and/or temporal processing. 
Basic principles underlying the design allow multi-layered, almost 
zero-power neural networks on a single silicon die.  One possible 
implementation, utilizing temporal neural circuitry for extraction 
and production of atomic auditory elements – phonemes in Broca’s 
and Wernicke’s areas of the cortex, is also shown. 
 

I. INTRODUCTION. 
 

Biological neurons consist of a cell body with dendrites 
branching-out from it, and an axon emerging from the cell body 
generally in the opposite direction.  The majority of the neuron's 
surface (cell membrane), except for the sheathed (myelinated) 
axon, is covered with synaptic sites.  Neurons communicate with 
each other via a variety of synaptic arrangements: Axodendritic 
(Axon to Dendrite), Dendrodendritic (Dendrite to Dendrite), 
Axoaxonic (Axon to Axon), and Reciprocal Synapses. The latter 
is formed when two or more dendrites are juxtaposed to form a 
synapse for bidirectional communication.  More complex 
arrangements may also exist, involving more than two neurons. 

Perception is a dynamic neural process, and thus timing is a 
key consideration.  In 1949 Donald Hebb proposed the theory of 
temporal control in biological systems based on the concept of 
reverberating cell assemblies [1].  Recently, much work has 
been done on reverberating behavior and its impact on 
mechanisms of perception and cognition [2]. According to 
William H Calvin [3] "It is important to extend this concept to a 
level when sequential activation of neural elements can produce 
thought and action. There is mounting evidence that brains do 
use population codes that are sensitive to temporal relationships 
on various time scales in order to exhibit motor behavior, 
speech, language, vision, audition, and reasoning."  A key 
problem turns out to be to engineer systems that can simulate the 
spatio-temporal relationship between neurons, and to understand 
how they collectively encode and decode information. 

Properties of biological synapses depend on their size and 
metabolic rate [4], while training is the process of adjusting 
these properties to meet a specific goal. In artificial (silicon) 

neurons [5] the same is sometimes achieved by implementing 
non-volatile memory [6], based on the physics of floating gate 
structures as storage elements for holding tunable synaptic 
weight coefficients.  A biological brain can process very 
complex sensory patterns in both spatial and temporal domains. 
The brain's responses to environmental changes can range from 
simple reflexes to generation of abstract thoughts and emotions. 
Unlike the brain’s circuitry, most ANNs (Artificial Neural 
Networks) can process only low-level spatial stimuli, and 
provide very limited means for temporal processing in complex 
hierarchical and multidimensional environments.  Some work 
has been done in the theory of ANNs to introduce temporal 
behavior [7], [8], however practical implementations of artificial 
neurons for temporal processing remain challenging.  The 
proposed concept provides a compact and efficient means for a 
higher degree of spatial and temporal processing within 
Artificial Neural Networks. 

One factor that significantly limits further improvement in 
structural complexity of ANNs is the lack of adequate 
technology for interconnects.  The complexity of modern ANNs 
remains orders of magnitude lower than that of biological nets.  
State of the art approaches allow simulating neural behavior 
only in terms of axodendritic connections and thus are limited. 

An unorthodox electronic component based on the physics 
of a giant floating gate structure to provide more flexibility in 
building neural networks for both spatial and temporal 
processing will be discussed.  It allows the implementation of 
axodendritic, dendrodendritic, axoaxonic, and reciprocal 
synaptic arrangements resulting in greatly improved 
interconnect flexibility of corresponding ANNs. 

 
II. GENERAL DESCRIPTION. 

 
A silicon neuron contains a Giant Polysilicon Floating 

Structure (GPFS) as the main computational element and is 
based on the ability of GPFS to preserve electric charge.  
Mostly impermeable SiO2 or Si3N4 barrier insulates GPFS from 
the surrounding circuitry and the substrate.  In at least two 
locations (Injection and Tunneling nodes) the thickness of this 
barrier is reduced to make the injection and removal of 
electrical charges (in this case electrons) possible. 

GPFS is made from undoped or low-doped polysilicon to 
allow an electic field to exist in its bulk.  As a result, the local 
charge density within the GPFS’ volume becomes a function of 
externally applied electric fields. The body of the GPFS 
branches-out (similar to neuron's dendrites) and these branches 
are the basis for artificial synapses. 



 

 

 

The device performs summation of a large number of 
weighted and slow-changing input stimuli, which are presented 
in analog, or pulse-width modulated form.  The output can 
easily be converted into either analog value or a train of width 
modulated pulses.  

The proposed model of the silicon neuron utilizes the 
ability of a GPFS to store an electric charge and perform signal 
processing by forcing the redistribution of this charge in the 
GPFS by the means of external electric fields.  A charge is 
normally injected into and tunneled out of the GPFS by hot 
electron injection and Fouler-Nordheim tunneling mechanisms. 
Electric fields are applied to the GPFS via capacitively coupled 
polysilicon or metal electrodes.  These electrodes are located 
below and/or above the GPFS.  They also can be fabricated 
within the substrate in a form of heavily doped n+ or p+ areas or 
a CCD channel, etc.  These externally applied electric fields 
determine the energy profile within the GPFS.  With some non-
essential for this discussion details, the GPFS with multiple 
synaptic sites can be considered as a branching array of MOS 
transistors that have a common drain and individual gates and 
sources, associated with each synapse.  Such consideration can 
only be made for conceptual purpose, since the proposed 
structures do not have the source and drain diffusion areas, 
which are present in MOS transistors.  Such structure can easily 
be fabricated within polysilicon.  Therefore, with some 
simplifications, each synapse can be thought of as a polysilicon 
FET with source, drain and gate potentials defined by externally 
applied electric fields.  Because the body of the GPFS is DC-
isolated from the rest of the electronic circuitry and other distant 
GPFS', the connections between different devices are achieved 
exclusively via capacitive coupling. 

A potential, applied to each “gate” node, creates an energy 
barrier between the adjacent “source” and the common “drain” 
areas (CDA).  This “gate” potential is effectively a synaptic 
weight coefficient that controls the “source” to CDA diffusion 
current within each synapse of the GPFS.  The diffusion 
currents of all synapses collectively affect the rate of charge 
accumulation in the GPFS' CDA.  The CDA integrates charges 
from all connected synapses.   The total charge represents the 
weighted sum of all the inputs.  Without externally applied 
electric fields and discounting boundary conditions, the charge 
within the GPFS is evenly distributed in the CDA.  A small 
strategically selected section of the CDA acts as a gate for the 
charge sensing Field Effect Transistor or the Sensor Node (SN) 
located underneath the CDA in the single-crystal substrate.  The 
local charge density in the CDA over the Sensor Node controls 
the current through the SN.  The source drain-current through 
the SN is integrated in a distant CCD-based (Charge Coupled 
Device) storage well.  The SN acts as a charge-injecting device 
for the subsequent Charge Pump (CP).  A current pulse is 
triggered every time the amount of charge in the storage node of 
the CP exceeds a threshold, and as a result the Storage Node is 
drained.  The sequence of these events creates an output train of 
pulses with frequency and duty cycle being a function of the 
charge density above the sensor node and control voltage 

applied to the CP.    
The GPFS does not have to be fabricated in a single crystal 

material and is therefore more tolerant to defects. This structure 
can be used to create 3D configurations with enhanced 
interconnectivity.  Such structures do not generate excessive 
heat, and can be fabricated in multiple polysilicon layers; as a 
result complex neural networks can be made on a single die. 
 

III. ARCHITECTURE AND OPERATIONAL DETAILS. 
 

The artificial neuron is described further in terms of its two 
fundamentally different processing domains: 1) GPFS and 2) 
single crystal substrate.  The use of GPFS allows some 
properties of synapses, dendrites, propagation delays within the 
“soma” and functionality of the axon hillock to be simulated.  
Single crystal substrate is used only to produce structures of the 
neuron that are responsible for a) adjusting sensitivity of the 
neuron via charge injection and tunneling into and out of the 
GPFS, b) energy characteristics of the axon, c) shape and nature 
of presynaptic activity, d) axonal propagation delay and e) speed 
of “action potential”.  The following sections describe all these 
components in greater detail.  Although several material 
combinations could be used to fabricate this device, the 
discussion is focused on silicon-based materials. 
 
A. Charge Accumulation 

 
A Silicon Neuron, with GPFS as a storage and 

computational medium, is based on the ability of an electric 
charge, injected into the floating gate structure through the 
insulating SiO2 or Si3N4 layer “Fig. 1”, to be preserved inside 
this insulating shell.  Application of an external electric field to 
this structure causes charge diffusion toward the areas with the 
lowest possible energy, resulting in redistribution of charge 
density. 

By applying appropriate voltages to the respective 
“Injector” and “Drain” nodes, electrons can be forced in and out 
of the GPFS.  This technique is very well described and has 

 



 

 

 

been implemented in designs of Synapse Transistors [9].  A  
FET (Field Effect Transistor) structure, serving as the charge-
sensing node - SN is fabricated below the GPFS.  After being 
injected into the GPFS, and in the absence of external electric 
fields, charges disperse evenly across the volume of the 
polysilicon structure. Any change in charge density over the SN 
also causes the current in the channel of the corresponding FET 
to change. 
 
B. Giant Polysilicon Floating Gate Structure   

 
With some degree of simplification of Boltzmann statistics, 

the behavior of charges in the bulk of GPFS under the influence 
of locally applied electric field can be described in terms of a 
hydrostatic model.  “Fig. 2” presents such a model in a form of a 
pool that contains a pressure sensor (equivalent to a charge 
sensor node below the GPFS) built into the bottom of the pool, 
and several water filled cavities.  Multiple pistons are located in 
the cavities in the bottom; each cavity-piston unit acts as a 
synapse. As pistons move, water is displaced from cavities 
resulting in constantly changing level above the pressure sensor. 
 The pressure sensor controls the level of water in the pool and 
acts similar to the FET Sensor Node in electrostatic case.  A 
precharged GPFS with an associated sensor node and multiple 
capacitively coupled electrodes act as an electrostatic analog of 
the hydrostatic model.  This structure works as a summing 
device for applied potentials (piston displacements). 

The effect of each synapse on the neuron’s overall activity 
can be expressed by the equation Si=ωiAi, where ωi is the 
synaptic weight and Ai, is a presynaptic activation (excitation or 
inhibition).  Presynaptic activation can be thought of as a 
magnitude of electric field created in the GPFS by voltage, 
applied to the corresponding control electrode.  The field profile 
induced by several electrodes shape a lateral energy gradient 
along the GPFS as shown in doted lines on “Fig. 3”.  
 The first component of the synaptic equation is the 
presynaptic potential Ai.  There are several mechanisms 

 

 
available for simulating the membrane’s postsynaptic activity. 
These mechanisms are based on different configurations and   
physical structures of the Control Electrodes.  All these 
mechanisms provide some sort of charge biasing (equivalent to 
the piston’s displacement in the hydrostatic model) in the GPFS. 
Five examples of these mechanisms are: “Fig. 3a” -a 
capacitively coupled electrode on top of the GPFS, “Fig. 3b” - 
CCD well filled with electrons and located below the GPFS in 
the substrate, “Fig. 3c” - a floating diffusion diode underneath 
of the GPFS, and “Fig. 3d” - a floating gate structure fabricated 
in SIMOX layer below the GPFS.  A variety of other 
mechanisms are also possible.  Several mechanisms can be 
combined to implement complicated field structure, resulting in 
even more intricate behavior of the device; In addition to 
mechanisms listed above, “Fig. 3e” shows a structure utilizing a 
reciprocal synapse.  This type of synaptic interconnection 
produces bi-directional influence of the local charge density in 
one GPFS on distribution of charges in another. 

The second component of the synaptic equation is the 
adjustable weight coefficient ωi. A nonvolatile semiconductor 
memory element, for example a charge trapping or floating gate 
device, can be used to implement a long-term memory function 
for storing synaptic weight coefficients ωi.  “Fig. 4” shows a 
longitudinal section of such structure that resembles a single 

 



 

 

 

synapse and a portion of the neuron’s GPFS.  This structure 
performs low-level signal processing that can simulate behavior 
of a single biological synapse.  The GPFS is encapsulated in 
SiO2 shell and consists of a number of synapses and the 
common summing node. Each synapse (excitatory or inhibitory) 
consists of two areas: 1) Area "I" where the presynaptic  
potential effects the postsynaptic energy profile and which is 
equivalent to Ai in the synaptic equation, 2) Area "II" where  
presynaptic weight adjustment occurs and which performs the 
multiplication by ωi, and 3) Common Drain Area "III" where 
the charge summation is taking place and which mimics the 
behavior of a biological neuron’s membrane.  In other words 
Area "I" is equivalent to an excitatory synaptic junction where 
neuro-transmition occurs, Area "II" defines the rate of “synaptic 
metabolism”, while Area "III" is the summing node, which 
integrates efforts of all synapses to depolarize the membrane 
and trigger a neuron’s firing. 

As the result of prolonged operation of the synapse, Area 
"I" becomes depleted and charge diffusion from "I" into "III" 
degenerates.  This is equivalent to a neuron’s hyperpolarization.  
When this condition occurs, high positive voltage is applied to 
reset the synapse to its operational condition.  Another possible 
mechanism is associated with a constant, but very small 
tunneling current, flowing into each synapse; this current is 
being integrated in the synaptic storage node, and the produced 
charge is rapidly drained-out during neuron’s firing.  In which 
case an extra time is required to restore the minimum amount of 
charge.  “Fig. 4” shows corresponding structure designed to 
simulate functionality of an excitatory synapse. An inhibitory 
synaptic function may be added as needed to an individual 
excitatory synapse or to a branch of excitatory synapses - 
dendrite. 
 
C. Somatic Mechanism and Charge Pump  

 
The somatic mechanism includes a Charge Sensor, VCO  

(Controlled Oscillator) equipped with a threshold control 
mechanism or Charge Pump “Fig. 5”, and a negative feedback 
somatic loop shown on “Fig. 6”.  This structure is designed to 

 

generate an appropriate oscillatory response upon excitation of 
the dendritic tree.  It also prevents the Neural Circuit from being 
overexcited through the introduction of local negative feedback. 
Additionally, threshold control simplifies the process of network 
adjustment to different levels of background activity. 

“Fig. 5” shows the structure of a simple device that 
simulates firing activity of a neuron and performs functions of a 
VCO - the Charge Pump (CP). This structure is essentially a 
small CCD shift register (four energy wells) along with some 
associated control circuitry.  A current, produced by the charge 
sensor (injector), introduces charge into the CCD well Q1, this 
well has a specified charge-holding capacity defined by its size 
and doping concentration.  Voltage on the sensor electrode or 
the gate of the CMOS driver depends on the amount of charge 
in this well.  When the sensor voltage exceeds the threshold of 
the driver, the output voltage of the CMOS changes from low 
high and forces the charge from Q1 to Q2. 

Hysteresis-like   behavior of the CMOS driver is important 
to prevent high frequency oscillation of the output of the device 
around the   point of equilibrium.  Hysteresis is achieved by 
additionally biasing the bulks of NMOS and PMOS components 
of the driver.  When high potential is applied, the lateral field 
under the clock electrode forces charges to move from Q1 to 
Q2.  As the result, voltage on the sensor electrode drops and the 
CMOS returns to the state with low voltage output, which 
elevates the energy profile in Q2 and prevents further emptying 
of the Q1.  At the same time, because of the graded doping 
profile in Q2 bucket, the charge from Q2 is forced into Q3, 
where it is drained through the diode/resistor circuit, creating a 
voltage drop across the resistor.  When the voltage on the clock 
electrode drops below a certain level, charge from Q2 moves 
into Q3, and Q1 begins the next cycle of charge integration 
(accumulation).  The diode connected to the Q3 node allows the 
charge to be drained into the load.  This process repeats 
continuously for as long as the injector injects electrons into Q1. 
 The duration of pulses depend on the channel current through 
the injector.  Besides providing a hysteresis-like behavior of the 
pump, the threshold control mechanism allows additional degree 
of freedom for adjustment of the neuron’s sensitivity. 

When the neuron is in a state of low background activity 
(subthreshold state), the charge pump fires with relatively low 
frequency and high pulse duration.  Any firing at all is due to the 
always-present parasitic current through the channel of the 
Charge Sensor FET.  Voltages applied to threshold control 
terminals of the Clock Driver set the point of the background 
activity of a neuron at specified level.  The CP starts firing with 
lower duration (higher frequency) when the output of the charge 
sensor FET exceeds the threshold value. The frequency of 
spikes gradually increases (duration decreases) in response to 
higher current through the Charge Sensor FET.  In some cases, 
the length of the CCD-based charge pump can be increased to 
introduce an additional signal delay.  In other cases, the firing 
rate of one neuron may control the propagation delay in the 
other neuron by clocking its charge pump (Axon). 
 



 

 

 

D.    Overall Operation of the Silicon Neuron. 
 
The GPFS with embedded synapses, Charge Sensor Node, 

and associated charge pump form a structure that simulates 
some functions of a biological neuron.  In cases where there is 
no need for propagation delay, a simple conductor is used to 
convey firing of one neuron to other neurons; if a delay is 
required - a CCD-based axon is introduced into the signal path.  
Use of CCD opens possibilities for both spatial and temporal 
signal processing; the later is due to controlled propagation 
delay - when one neuron controls the rate of firing activity of a 
distant neuron by setting up a CCD clock frequency.  

CP generates pulses that are applied to inhibitory and/or 
excitatory synapses of distant neurons “Fig. 6”, and control 
charge buildups in their corresponding GPFS’.  Sometimes it 
may be necessary to introduce a negative-feedback local somatic 
loop.  Such a loop employs direct output from the CP or from 
the CMOS sensor to trigger a blocking mechanism.  When the 
neuron becomes overexcited, an input voltage on the CMOS 
sensor increases, which causes increased firing activity of the 
CP. A dedicated inhibitory synapse or a group of activity 
blocking inhibitory synapses remove some electrons from the 
floating structure, and by this means keep the neuron away from 
the overexcited state.  

Fig. 6” shows five synaptic organizations integrated into a 
single Silicon Neuron: 1) A synapse with overlaying Control 
Electrode, similar to “Fig. 3a,” 2) CCD-base charge (stimuli) 
transporting structure for presynaptic temporal activation, 
similar to “Fig. 3b,” 3) A synapse with an underlying diffusion 
area in the substrate Control Electrode, similar to “Fig. 3c,” 4) 
Combined synapse with both overlaying and underlying Control 
Electrodes, similar to “Fig. 4,” 5) a reciprocal synapse with 
several GPFS's from different neurons overlaying each other and 
possibly presynaptic membranes of Type 1, 2, 3, and 4 over the 
synaptic site to form a complex interrelated arrangement, similar 
to “Fig. 3e.”  In addition to different types of synaptic 
organizations “Fig. 6” shows the structure of a Dendritic Trunk  
with Dendritic Inhibition, Axon Hillock Inhibition, somatic 

 

mechanism, and an Axonal propagation delay mechanism (a 
CCD-based inter-neuron controlled delay).  As a separate insert 
the simplified graphical representation of several Dendro- 
Dendritic and Axo-Dendritic connections is also shown. 
 
E. Axonal Propagation Delay Mechanism. 
 
 The main purpose of the axon is to deliver the firing 
activity of a neuron to a presynaptic membrane of a distant 
neuron.  In some cases, like in processing of spatial visual 
information in the retina, LGN (Lateral Geniculate Nucleus), 
olfactory and taste nuclei, etc. temporal processing is not 
required; in other cases, like speech processing and synthesis, 
motor actions, and any other processing requiring time-
coordinated efforts from many neurons, such a capability 
becomes highly desirable.  It is becoming essential to control the 
signal propagation delay in neural networks for temporal 
processing.  In the proposed structure of the Silicon Neuron the 
delay can be introduced via implementing a CCD-based signal-
transporting scheme in the structure that simulates the behavior 
of an axon.  

There are at least two mechanisms available to control the 
propagation delay of the firing activity of one neuron to another: 
1) self-induced delay, and 2) externally induced delay.  Since 
the Charge Pump is essentially a CCD structure that produces a 
PWM  (Pulse Width Modulated) sequence, the delay is 
automatically introduced as a function of the neuron’s firing 
frequency and the length of the CCD register, which is 
equivalent to the number of steps from the beginning of the axon 
 (cell body) to its end - synaptic cleft with the target.  As a 
result, extending the Charge Pump structure and adjusting the 
threshold of the CMOS clock driver - “Fig. 7”, allows 
manipulation of an internally induced delay.  Self-induced delay 
is also a function of the postsynaptic activity of the Silicon 
Neuron. 

If needed, an externally induced delay is implemented by 
utilizing a structure similar to the one shown on “Fig. 7”, but 
instead of clocking the CCD from its own Charge Pump, the 
propagation of charge packets along the axon of one neuron is 
controlled by the firing activity of another neuron.  Under these 
conditions the signal propagation speed can be adjusted 

 



 

 

 

according to the needs of a particular network. 
The delayed firing of a neuron can also be utilized to 

construct ANN’s exhibiting behaviors similar to Hebbian 
oscillations. Such oscillations are usually associated with 
Reverberating Cell Assemblies and require delayed feedback 
loops; the example is presented on “Fig. 8”.  Neurons 1, 2, and 3 
are the components of the reverberating Cell Assembly, similar 
to Hebb’s discription; the assembly receives an input stimulus 
from a "Mossy Fiber" arriving from a distant location in the   
neural network (cerebral cortex).  Firing activity of Neuron 1 is 
controlled by an externally induced delay, which is produced by 
the Neuron 2.  Firing of Neuron 2 is defined by its presynaptic 
activation and is not delayed, while firing activity of Neuron 3 is 
defined by its presynaptic activation and is   delayed in 
accordance to its activation (self-induced propagation). 

Multiple feedback control loops may exist in such 
structures that allow desirable signal conversion and 
conditioning.  For example, a short stimulation of a "Mossy   
Fiber" may trigger prolonged oscillations of the assembly by 
initially exciting all three neurons of the assembly, followed by 
delayed firing of Neuron 1 that reinitiates the process.  A delay 
introduced into the positive feedback loop, that includes 
Neurons 2 and 3, maintains the oscillations for a duration that 
can be defined by the characteristics of these neurons. 
 

IV. SIMPLE NETWORK IMPLEMENTATION. 
 

Behavior similar to the one described above can be used to 
simulate the activity of some of brain’s auditory functions.  The 
auditory cortex processes information, that was converted by 
cochlea into the frequency domain [10], so that fluent speech 
can be filtered from noise and decomposed into simple 
components, similar to phonemes.  The representation of each 
phoneme may exist in the brain's Broca’s area as a hardwired 
Reverberating Cell Assembly.  When exposed to a speech 
sequence, a unique, phoneme-specific temporal assembly 
becomes excited only if the corresponding phoneme is present 
in the auditory stimuli.  At the same time, a similar structure 
may exist in Wernicke’s area, and when activated by a simple 
short stimulus, it produces a synchronized pattern of firing.  
This pattern stimulates various facial and glottal muscles to 
produce the sound of the desirable "hardwired" phoneme. 
Similar structures can also be expected in different locations in 
the brain responsible for memory, reflexes, motor control, etc. 
 

V. CONCLUSIONS. 
 

This paper presents an approach to building semiconductor 
computational elements that closely resemble topologies and 
behavior of biological neurons.  It uses standard semiconductor 
fabrication technology in an unorthodox manner to build 
neuromorphic computational components that are not based on 
traditional models of MOS and BJT transistors.  Controlled 
electrostatic fields applied to a precharged poorly conducting 
medium force redistribution of charges in the bulk of it and 

 
make complex computations possible.  Physics of the proposed 
device, its architecture, and the material used allow stacking of 
multiple layers of processing elements and 3D interconnects on 
a single silicon substrate.  High density interconnects, no-current 
operation and neuron-oriented computations allow for a higher 
level of system integration and thus, building more complex nets 
on a silicon die.  However, many intricacies of the device 
operation are not yet fully understood and require further 
investigation via simulations and experimental fabrications. 
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